Model silicone foul-release coatings with controlled molecular architecture were evaluated to determine the effect of compositional variables such as filler loading and crosslink density on pseudobarnacle attachment strength. Pseudobarnacle adhesion values correlated with filler loadings in both condensation and hydrosilylation-cured silicones. Variation of crosslink density of hydrosilylation-cured silicones had an insignificant effect on attachment strength. X-ray photoelectron spectroscopy (XPS) indicated that the mode of failure upon detachment of the pseudobarnacle was dependent upon the crosslink density; samples with high crosslink density failed cohesively within the silicone.