Immobilization and aggregation of the antimicrobial peptide protegrin-1 in lipid bilayers investigated by solid-state NMR

Biochemistry. 2003 Nov 25;42(46):13725-34. doi: 10.1021/bi035187w.

Abstract

The dynamics and aggregation of a beta-sheet antimicrobial peptide, protegrin-1 (PG-1), are investigated using solid-state NMR spectroscopy. Chemical shift anisotropies of F12 and V16 carbonyl carbons are uniaxially averaged in 1,2-dilauryl-sn-glycero-3-phosphatidylcholine (DLPC) bilayers but approach rigid-limit values in the thicker 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphatidylcholine (POPC) bilayers. The Calpha-Halpha dipolar coupling of L5 is scaled by a factor of 0.16 in DLPC bilayers but has a near-unity order parameter of 0.96 in POPC bilayers. The larger couplings of PG-1 in POPC bilayers indicate immobilization of the peptide, suggesting that PG-1 forms oligomeric aggregates at the biologically relevant bilayer thickness. Exchange NMR experiments on F12 (13)CO-labeled PG-1 show that the peptide undergoes slow reorientation with a correlation time of 0.7 +/- 0.2 s in POPC bilayers. This long correlation time suggests that in addition to aggregation, geometric constraints in the membrane may also contribute to PG-1 immobilization. The PG-1 aggregates contact both the surface and the hydrophobic center of the POPC bilayer, as determined by (1)H spin-diffusion measurements. Thus, solid-state NMR provides a wide range of information about the molecular details of membrane peptide immobilization and aggregation in lipid bilayers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anisotropy
  • Antimicrobial Cationic Peptides
  • Diffusion
  • Lipid Bilayers / chemistry*
  • Nuclear Magnetic Resonance, Biomolecular / methods
  • Phosphorylcholine / chemistry
  • Protein Structure, Secondary
  • Proteins / chemistry*

Substances

  • Antimicrobial Cationic Peptides
  • Lipid Bilayers
  • Proteins
  • protegrin-1
  • Phosphorylcholine