The beta-subunit (E1beta) of the pyruvate decarboxylase (E1, alpha(2)beta(2)) component of the Bacillus stearothermophilus pyruvate dehydrogenase complex was comparatively modelled based on the crystal structures of the homologous 2-oxoisovalerate decarboxylase of Pseudomonas putida and Homo sapiens. Based on this homology modelling, alanine-scanning mutagenesis studies revealed that the negatively charged side chain of Glu285 and the hydrophobic side chain of Phe324 are of particular importance in the interaction with the peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase component of the complex. These results help to identify the site of interaction on the E1beta subunit and are consistent with thermodynamic evidence of a mixture of electrostatic and hydrophobic interactions being involved.