Plasminogen activators (PAs) and their inhibitors (PAIs) are predicted to be involved in the restructuring events that characterize the testis throughout development. We here demonstrate that PAI-3 or protein C (PC) inhibitor (PCI) was expressed in a sexually dimorphic fashion during mouse gonad genesis, whereas PAI-1 and -2 exhibited no sex differences. PCI transcripts accumulated rapidly in the male gonad, from 12.5 d postcoitum onward. Western blot and immunohistochemistry analyses confirmed that male, but not female, fetal gonads produced PCI, and that Leydig cells are the site of PCI synthesis. The occurrence of testicular target proteases for PCI, i.e. PC and urokinase- and tissue-type PA, was further tracked using RT-PCR, plasminogen zymography, and/or immunohistochemistry. PC and tissue-type PA showed no variation between sexes. By contrast, urokinase-type PA and its receptor (uPAR; which dictates the site and extent of proteolysis) exhibited sex differences from 13.5-14.5 d postcoitum. At that time, uPAR expression was restricted to Leydig cells. At earlier ages, uPAR was uniformly and widely distributed in the gonads of both sexes. In adult testes, PCI and uPAR immunoreactivities were also present in Leydig cells. In addition, PCI, PC, and uPAR had a germinal origin. Collectively, these results support the hypothesis that PCI may contribute to proteolysis equilibrium within the testis by acting in tandem with urokinase in Leydig cells and with PC and/or urokinase in spermatogenic cells. It will be important to determine how this role is linked to the phenotype of sterility reported elsewhere in male mice with pci deleted.