In macaque monkeys, an optokinetic response (OKR) can be elicited monocularly both in temporonasal and, albeit weaker, in nasotemporal direction very early after birth. The further maturation of equal strengths of OKR in both directions depends on stimulus velocity: at low-stimulus velocities (10-20 degrees /s) symmetry is reached at 3-4 weeks of age, at higher-stimulus velocities (40-80 degrees /s) it is reached only at 4-5 months of age. Retinal slip neurons in the NOT-DTN are direction selective for ipsiversive stimulus movement shortly after birth. Most of these neurons receive input from both eyes; many are dominated by the contralateral eye. Electrophysiological and neuroanatomical evidence suggests that the cortical input to the NOT-DTN starts to become functional by postnatal day 14, at the latest. Based on these behavioral and physiological data, as well as on comparison with data from kittens and human infants, we hypothesize that the very early monocularly elicited bidirectional optokinetic response is due to the direct retinal input from both eyes to the NOT-DTN. As the cortical projection matures, it gains more and more influence upon the response properties of retinal slip neurons in the NOT-DTN, and the retinal influence gradually decreases.