Kaposi's sarcoma-associated herpesvirus (KSHV, or HHV-8) encodes a pathogenic viral homologue of human interleukin-6 (IL-6). In contrast to human IL-6 (hIL-6), viral IL-6 (vIL-6) binds directly to, and activates, the shared human cytokine signaling receptor gp130 without the requirement for pre-complexation to a specific alpha-receptor. Here, we dissect the biochemical and functional basis of vIL-6 mimicry of hIL-6. We find that, in addition to the "alpha-receptor-independent" tetrameric vIL-6/gp130 complex, the viral cytokine can engage the human alpha-receptor (IL-6Ralpha) to form a hexameric vIL-6/IL-6Ralpha/gp130 complex with enhanced signaling potency. In contrast to the assembly sequence of the hIL-6 hexamer, the preformed vIL-6/gp130 tetramer can be decorated with IL-6Ralpha, post facto, in a "vIL-6-dependent" fashion. A detailed comparison of the viral and human cytokine/gp130 interfaces indicates that vIL-6 has evolved a unique molecular strategy to interact with gp130, as revealed by an almost entirely divergent structural makeup of its receptor binding sites. Viral IL-6 appears to utilize an elegant combination of both convergent, and unexpectedly divergent, molecular strategies to oligomerize gp130 and activate similar downstream signaling cascades as its human counterpart.