The synaptobrevin-like 1 (SYBL1) gene is ubiquitously expressed and codes for an unusual member of the v-SNAREs molecules implicated in cellular exocytosis. This X-linked gene has the peculiarity of also being present on the Y chromosome in a transcriptional inactive status. Moreover, although ubiquitous, the function of SYBL1 is prominent in specific tissues, such as brain. As a first insight into the molecular mechanisms controlling SYBL1 expression, in this report we describe the extent and role of SYBL1 upstream regions and characterize the binding of trans-acting factors. In vivo foot-printing experiments identify three protected regions. Band shift and transient reporter gene assays indicate a strong role of two of these evolutionary conserved regions in regulating SYBL1 transcription. Because one site is the classical CAAT box, we characterized the binding to the other site of the mammalian homologues of the selenocysteine tRNA gene transcription activating factor (Staf) family, zinc-finger transcription factors, and their role in regulating SYBL1 expression. The results reported here clarify that a Staf-zinc finger family factor, together with the CAAT factor, is the major nuclear protein bound to the SYBL1 promoter region and is responsible for its regulation in HeLa cells, thus identifying the basic control of SYBL1 transcription. In vivo binding of Staf proteins to the SYBL1 promoter is confirmed by chromatin immunoprecipitation assays. Our results identify a fourth mRNA promoter stimulated by a member of the Staf-zinc finger family, the function of which on mRNA polymerase II promoters is still very poorly understood.