Numerically stable algorithms for the computation of reduced unit cells

Acta Crystallogr A. 2004 Jan;60(Pt 1):1-6. doi: 10.1107/s010876730302186x. Epub 2003 Dec 23.

Abstract

The computation of reduced unit cells is an important building block for a number of crystallographic applications, but unfortunately it is very easy to demonstrate that the conventional implementation of cell reduction algorithms is not numerically stable. A numerically stable implementation of the Niggli-reduction algorithm of Krivý & Gruber [Acta Cryst. (1976), A32, 297-298] is presented. The stability is achieved by consistently using a tolerance in all floating-point comparisons. The tolerance must be greater than the accumulated rounding errors. A second stable algorithm is also presented, the minimum reduction, that does not require using a tolerance. It produces a cell with minimum lengths and all angles acute or obtuse. The algorithm is a simplified and modified version of the Buerger-reduction algorithm of Gruber [Acta Cryst. (1973), A29, 433-440]. Both algorithms have been enhanced to generate a change-of-basis matrix along with the parameters of the reduced cell.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms*
  • Crystallography