We examined the function of alpha4beta1 integrin in angiogenesis and in mediating endothelial cell responses to the angiogenesis modulators, thrombospondin-1 and thrombospondin-2. Alpha4beta1 supports adhesion of venous endothelial cells but not of microvascular endothelial cells on immobilized thrombospondin-1, vascular cell adhesion molecule-1, or recombinant N-terminal regions of thrombospondin-1 and thrombospondin-2. Chemotactic activities of this region of thrombospondin-1 and thrombospondin-2 are also mediated by alpha4beta1, whereas antagonism of fibroblast growth factor-2-stimulated chemotaxis is not mediated by this region. Immobilized N-terminal regions of thrombospondin-1 and thrombospondin-2 promote endothelial cell survival and proliferation in an alpha4beta1-dependent manner. Soluble alpha4beta1 antagonists inhibit angiogenesis in the chick chorioallantoic membrane and neovascularization of mouse muscle explants. The latter inhibition is thrombospondin-1-dependent and not observed in explants from thrombospondin-1-/- mice. Antagonizing alpha4beta1 may in part block proangiogenic activities of thrombospondin-1 and thrombospondin-2, because N-terminal regions of thrombospondin-1 and thrombospondin-2 containing the alpha4beta1 binding sequence stimulate angiogenesis in vivo. Therefore, alpha4beta1 is an important endothelial cell receptor for mediating motility and proliferative responses to thrombospondins and for modulation of angiogenesis.