The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins

Microbiology (Reading). 2004 Jan;150(Pt 1):127-134. doi: 10.1099/mic.0.26614-0.

Abstract

The Clostridium perfringens tetracycline resistance protein, TetA(P), is an inner-membrane protein that mediates the active efflux of tetracycline from the bacterial cell. This protein comprises 420 aa and is predicted to have 12 transmembrane domains (TMDs). Comparison of the TetA(P) amino acid sequence to that of several members of the major facilitator superfamily (MFS) identified a variant copy of the conserved Motif A. This region consists of the sequence E59xPxxxxxDxxxRK72 and is located within the putative loop joining TMDs 2 and 3 in the predicted structural model of the TetA(P) protein. To study the functional importance of the conserved residues, site-directed mutagenesis was used to construct 17 point mutations that were then analysed for their effect on tetracycline resistance and their ability to produce an immunoreactive TetA(P) protein. Changes to the conserved Phe-58 residue were tolerated, whereas three independent substitutions of Pro-61 abolished tetracycline resistance. Examination of the basic residues showed that Arg-71 is required for function, whereas tetracycline resistance was retained when Lys-72 was substituted with arginine. These results confirm that the region encoding this motif is important for tetracycline resistance and represents a distant version of the Motif A region found in other efflux proteins and members of the MFS family. In addition, it was shown that Glu-117 of the TetA(P) protein, which is predicted to be located in TMD4, is important for resistance although a derivative with an aspartate residue at this position is also functional.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Motifs
  • Amino Acid Sequence
  • Antiporters / chemistry*
  • Antiporters / genetics
  • Antiporters / metabolism*
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Clostridium perfringens / genetics
  • Clostridium perfringens / metabolism*
  • Glutamic Acid / chemistry
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Sequence Homology, Amino Acid
  • Tetracycline Resistance

Substances

  • Antiporters
  • Bacterial Proteins
  • tetA protein, Bacteria
  • Glutamic Acid