This paper examines an alternative approach to separating magnetic resonance imaging (MRI) intensity inhomogeneity from underlying tissue-intensity structure using a direct template-based paradigm. This permits the explicit spatial modeling of subtle intensity variations present in normal anatomy which may confound common retrospective correction techniques using criteria derived from a global intensity model. A fine-scale entropy driven spatial normalisation procedure is employed to map intensity distorted MR images to a tissue reference template. This allows a direct estimation of the relative bias field between template and subject MR images, from the ratio of their low-pass filtered intensity values. A tissue template for an aging individual is constructed and used to correct distortion in a set of data acquired as part of a study on dementia. A careful validation based on manual segmentation and correction of nine datasets with a range of anatomies and distortion levels is carried out. This reveals a consistent improvement in the removal of global intensity variation in terms of the agreement with a global manual bias estimate, and in the reduction in the coefficient of intensity variation in manually delineated regions of white matter.