Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.