Glutamate transporter expression and function in human glial progenitors

Glia. 2004 Jan 15;45(2):133-43. doi: 10.1002/glia.10310.

Abstract

Glutamate is the major neurotransmitter of the brain, whose extracellular levels are tightly controlled by glutamate transporters. Five glutamate transporters in the human brain (EAAT1-5) are present on both astroglia and neurons. We characterize the profile of three different human astroglial progenitors in vitro: human glial restricted precursors (HGRP), human astrocyte precursors (HAPC), and early-differentiated astrocytes. EAAT 1, EAAT3, and EAAT4 are all expressed in GRPs with a subsequent upregulation of EAAT1 following differentiation of GRPs into GRP-derived astrocytes in the presence of bone morphogenic protein (BMP-4). This corresponds to a significant increase in the glutamate transport capacity of these cells. EAAT2, the transporter responsible for the bulk of glutamate transport in the adult brain, is not expressed as a full-length protein, nor does it appear to have functional significance (as determined by the EAAT2 inhibitor dihydrokainate) in these precursors. A splice variant of EAAT2, termed EAAT2b, does appear to be present in low levels, however. EAAT3 and EAAT4 expression is reduced as glial maturation progresses both in astrocyte precursors and early-differentiated astrocytes and is consistent with their role in adult tissues as primarily neuronal glutamate transporters. These human glial precursors offer several advantages as tools for understanding glial biology because they can be passaged extensively in the presence of mitogens, afford the potential to study the temporal changes in glutamate transporter expression in a tightly controlled fashion, and are cultured in the absence of neuronal coculture, allowing for the independent study of astroglial biology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Transport System X-AG / metabolism*
  • Animals
  • Animals, Newborn
  • Astrocytes / cytology
  • Astrocytes / drug effects
  • Astrocytes / metabolism*
  • Bone Morphogenetic Protein 4
  • Bone Morphogenetic Proteins / pharmacology
  • Brain / embryology
  • Brain / growth & development
  • Brain / metabolism*
  • Cell Differentiation / physiology
  • Cell Line
  • Enzyme Inhibitors / pharmacology
  • Excitatory Amino Acid Transporter 1 / metabolism
  • Excitatory Amino Acid Transporter 2 / antagonists & inhibitors
  • Excitatory Amino Acid Transporter 2 / genetics
  • Excitatory Amino Acid Transporter 2 / metabolism
  • Excitatory Amino Acid Transporter 3
  • Excitatory Amino Acid Transporter 4
  • Fetus
  • Glutamate Plasma Membrane Transport Proteins
  • Glutamic Acid / physiology*
  • Humans
  • Hyaluronan Receptors / biosynthesis
  • Immunohistochemistry
  • Models, Biological
  • Protein Isoforms / antagonists & inhibitors
  • Protein Isoforms / genetics
  • Protein Isoforms / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Stem Cells / cytology
  • Stem Cells / drug effects
  • Stem Cells / metabolism*
  • Symporters / metabolism
  • Synaptic Transmission / drug effects
  • Synaptic Transmission / physiology*
  • Up-Regulation / drug effects
  • Up-Regulation / physiology

Substances

  • Amino Acid Transport System X-AG
  • BMP4 protein, human
  • Bmp4 protein, rat
  • Bone Morphogenetic Protein 4
  • Bone Morphogenetic Proteins
  • Enzyme Inhibitors
  • Excitatory Amino Acid Transporter 1
  • Excitatory Amino Acid Transporter 2
  • Excitatory Amino Acid Transporter 3
  • Excitatory Amino Acid Transporter 4
  • Glutamate Plasma Membrane Transport Proteins
  • Hyaluronan Receptors
  • Protein Isoforms
  • SLC1A1 protein, human
  • SLC1A2 protein, human
  • SLC1A3 protein, human
  • SLC1A6 protein, human
  • Slc1a1 protein, rat
  • Slc1a2 protein, rat
  • Slc1a3 protein, rat
  • Slc1a6 protein, rat
  • Symporters
  • Glutamic Acid