Photodynamic therapy (PDT) is a promising new treatment modality for several diseases, most notably cancer. In PDT, light, O2, and a photosensitizing drug are combined to produce a selective therapeutic effect. Lately, there has been active research on new photosensitizer candidates, because the most commonly used porphyrin photosensitizers are far from ideal with respect to PDT. Finding a suitable photosensitizer is crucial in improving the efficacy of PDT. Recent synthetic activity has created such a great number of potential photosensitizers for PDT that it is difficult to decide which ones are suitable for which pathological conditions, such as various cancer species. To facilitate the choice of photosensitizer, this review presents a thorough survey of the photophysical and chemical properties of the developed tetrapyrrolic photosensitizers. Special attention is paid to the singlet-oxygen yield (PhiDelta) of each photosensitizer, because it is one of the most important photodynamic parameters in PDT. Also, in the survey, emphasis is placed on those photosensitizers that can easily be prepared by partial syntheses starting from the abundant natural precursors, protoheme and the chlorophylls. Such emphasis is justified by economical and environmental reasons. Several of the most promising photosensitizer candidates are chlorins or bacteriochlorins. Consequently, chlorophyll-related chlorins, whose PhiDelta have been determined, are discussed in detail as potential photosensitizers for PDT. Finally, PDT is briefly discussed as a treatment modality, including its clinical aspects, light sources, targeting of the photosensitizer, and opportunities.