Lipid A is the pro-inflammatory component of bacterial lipopolysaccharide, the major surface component of Gram-negative bacteria. Gram-negative bacteria alter the structure of lipid A in response to specific environmental conditions including those found upon colonization of a host. The opportunistic pathogen Pseudomonas aeruginosa synthesizes a unique hexa-acylated lipid A containing palmitate and aminoarabinose during adaptation to the cystic fibrosis airway. Different lipid A species are observed in P. aeruginosa isolated from non-cystic fibrosis associated infections. Here we report that P. aeruginosa isolates from the airway of a cystic fibrosis patient with severe pulmonary disease synthesized a novel hepta-acylated lipid A. Cystic fibrosis-specific P. aeruginosa lipid A modifications result in resistance to host antimicrobial peptides and increased recognition by human Toll-like receptor 4 (TLR4). Using P. aeruginosa lipid A with different levels of acylation, we identified a 222 amino acid region in the extracellular portion of human TLR4 that is required for the differential recognition of cystic fibrosis-specific lipid A. P. aeruginosa adaptation to the human airway may, therefore, play a fundamental role in the progressive lung damage associated with cystic fibrosis.