Several endothelial growth factors induce both blood and lymphatic angiogenesis. However, a systematic comparative study of the impact of these factors on vascular morphology and function has been lacking. In this study, we report a quantitative analysis of the structure and macromolecular permeability of FGF-2-, VEGF-A-, and VEGF-C-induced blood and lymphatic vessels. Our results show that VEGF-A stimulated formation of disorganized, nascent vasculatures as a result of fusion of blood capillaries into premature plexuses with only a few lymphatic vessels. Ultrastructural analysis revealed that VEGF-A-induced blood vessels contained high numbers of endothelial fenestrations that mediated high permeability to ferritin, whereas the FGF-2-induced blood vessels lacked vascular fenestrations and showed only little leakage of ferritin. VEGF-C induced approximately equal amounts of blood and lymphatic capillaries with endothelial fenestrations present only on blood capillaries, mediating a medium level of ferritin leakage into the perivascular space. No endothelial fenestrations were found in FGF-2-, VEGF-A-, or VEGF-C-induced lymphatic vessels. These findings highlight the structural and functional differences between blood and lymphatic vessels induced by FGF-2, VEGF-A, and VEGF-C. Such information is important to consider in development of novel therapeutic strategies using these angiogenic factors.