Single nucleotide polymorphisms (SNPs) in the human genome are thought to be organised into blocks of high internal linkage disequilibrium (LD), separated by intermittent recombination hotspots. Since understanding haplotype structure is critical for an accurate assessment of inter-individual genetic differences, we investigated up to 968 SNPs from a 10-Mb region on chromosome 6p21, including the human major histocompatibility complex (MHC), in five different population samples (45-550 individuals). Regions of well-defined block structure were found to coexist alongside large areas lacking any clear structure; occasional long-range LD was observed in all five samples. The four white populations analysed were remarkably similar in terms of the extend and spatial distribution of local LD. In US African Americans, the distribution of LD was similar to that in the white populations but the observed haplotype diversity was higher. The existence of large regions without any clear block structure renders the systematic and thorough construction of SNP haplotype maps a crucial prerequisite for disease-association studies.