PBP 2a mutations producing very-high-level resistance to beta-lactams

Antimicrob Agents Chemother. 2004 Feb;48(2):453-9. doi: 10.1128/AAC.48.2.453-459.2004.

Abstract

Resistance to the beta-lactam class of antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is mediated by PBP 2a, a synthetic bacterial cell wall penicillin-binding protein with a low affinity of binding to beta-lactams that is encoded by mecA. Beta-lactams that bind to PBP 2a with a high affinity and that are highly active against MRSA are under development. The potential for the emergence of resistance to such compounds was investigated by passage of homogeneous MRSA strain COL in L-695,256, an investigational carbapenem. A highly resistant mutant, COL52, expressed PBP 2a in which a two-amino-acid deletion mutation and three single-amino-acid substitution mutations were present. To examine the effects of these mutations on the resistance phenotype and PBP 2a production, plasmids carrying (i) PBP 2a with two or three of the four mutations, (ii) wild-type PBP 2a, or (iii) COL52 PBP 2a were introduced into methicillin-susceptible COL variants COLnex and COL52ex, from which the staphylococcus cassette chromosome mec (SCCmec) has been excised, as indicated by the "ex" suffix. Two amino acids substitutions, E-->K(237) within the non-penicillin-binding domain and V-->E(470) near the SDN(464) conserved penicillin-binding motif in the penicillin-binding domain in COL52, were important for high-level resistance. The highest level of resistance was observed when all four mutations were present. The emergence of PBP 2a-mediated resistance to beta-lactams that bind to PBP 2a with a high affinity is likely to require multiple mutations in mecA; chromosomal mutations appear to have a minor role.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Substitution
  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics*
  • Blotting, Western
  • Carbapenems / pharmacology
  • Carrier Proteins / genetics*
  • DNA Primers
  • DNA, Bacterial / genetics
  • Drug Resistance, Bacterial / genetics*
  • Hexosyltransferases / genetics*
  • Imidazoles / pharmacology
  • Methicillin Resistance
  • Microbial Sensitivity Tests
  • Muramoylpentapeptide Carboxypeptidase / genetics*
  • Mutation / genetics*
  • Mutation / physiology
  • Penicillin-Binding Proteins
  • Peptidyl Transferases / genetics*
  • Phenotype
  • Plasmids / genetics
  • Protein Binding
  • Staphylococcus aureus / drug effects
  • Staphylococcus aureus / genetics
  • Transformation, Bacterial
  • beta-Lactams / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Carbapenems
  • Carrier Proteins
  • DNA Primers
  • DNA, Bacterial
  • Imidazoles
  • L 695256
  • Penicillin-Binding Proteins
  • beta-Lactams
  • Peptidyl Transferases
  • Hexosyltransferases
  • Muramoylpentapeptide Carboxypeptidase