ATP and ADP levels are critical regulators of glucose-stimulated insulin secretion. In many aerobic cell types, the phosphorylation potential (ATP/ADP/P(i)) is controlled by sensing mechanisms inherent in mitochondrial metabolism that feed back and induce compensatory changes in electron transport. To determine whether such regulation may contribute to stimulus-secretion coupling in islet cells, we used a recently developed flow culture system to continuously and noninvasively measure cytochrome c redox state and oxygen consumption as indexes of electron transport in perifused isolated rat islets. Increasing substrate availability by increasing glucose increased cytochrome c reduction and oxygen consumption, whereas increasing metabolic demand with glibenclamide increased oxygen consumption but not cytochrome c reduction. The data were analyzed using a kinetic model of the dual control of electron transport and oxygen consumption by substrate availability and energy demand, and ATP/ADP/P(i) was estimated as a function of time. ATP/ADP/P(i) increased in response to glucose and decreased in response to glibenclamide, consistent with what is known about the effects of these agents on energy state. Therefore, a simple model representing the hypothesized role of mitochondrial coupling in governing phosphorylation potential correctly predicted the directional changes in ATP/ADP/P(i). Thus, the data support the notion that mitochondrial-coupling mechanisms, by virtue of their role in establishing ATP and ADP levels, may play a role in mediating nutrient-stimulated insulin secretion. Our results also offer a new method for continuous noninvasive measures of islet cell phosphorylation potential, a critical metabolic variable that controls insulin secretion by ATP-sensitive K(+)-dependent and -independent mechanisms.