Infrared imaging of subcutaneous veins

Lasers Surg Med. 2004;34(1):56-61. doi: 10.1002/lsm.10248.

Abstract

Background and objectives: Imaging of subcutaneous veins is important in many applications, such as gaining venous access and vascular surgery. Despite a long history of medical infrared (IR) photography and imaging, this technique is not widely used for this purpose. Here we revisited and explored the capability of near-IR imaging to visualize subcutaneous structures, with a focus on diagnostics of superficial veins.

Study design/materials and methods: An IR device comprising a head-mounted IR LED array (880 nm), a small conventional CCD camera (Toshiba Ik-mui, Tokyo, Japan), virtual-reality optics, polarizers, filters, and diffusers was used in vivo to obtain images of different subcutaneous structures. The same device was used to estimate the IR image quality as a function of wavelength produced by a tunable xenon lamp-based monochrometer in the range of 500-1,000 nm and continuous-wave Nd:YAG (1.06 microm) and diode (805 nm) lasers.

Results: The various modes of optical illumination were compared in vivo. Contrast of the IR images in the reflectance mode was measured in the near-IR spectral range of 650-1,060 nm. Using the LED array, various IR images were obtained in vivo, including images of vein structure in a pigmented, fatty forearm, varicose leg veins, and vascular lesions of the tongue.

Conclusion: Imaging in the near-IR range (880-930 nm) provides relatively good contrast of subcutaneous veins, underscoring its value for diagnosis. This technique has the potential for the diagnosis of varicose veins with a diameter of 0.5-2 mm at a depth of 1-3 mm, guidance of venous access, podiatry, phlebotomy, injection sclerotherapy, and control of laser interstitial therapy.

MeSH terms

  • Forearm / blood supply
  • Humans
  • Infrared Rays*
  • Laser Therapy
  • Skin / blood supply*
  • Varicose Veins / diagnosis
  • Veins