The relative tissue distribution and toxicity of cadmium (Cd) and mercury (Hg) in the liver and kidneys of rats when the metals are administered as either inorganic salts or complexed with MT were studied. Male Sprague-Dawley rats were injected (i.v.) with Cd or Hg inorganic salt of chloride or in a complex of MT at a dose of 0.3 mg/kg body weight. The concentration of MT and metals in plasma and urine was monitored for 7 days, at the end of which the rats were killed. Injection of both HgCl2 and Hg-MT induced the synthesis of MT only in the kidney but not in the liver, whereas CdCl2 and Cd-MT injections induced MT synthesis in both liver and kidney, respectively. Plasma MT levels increased 3 days after CdCl2 but not after HgCl2 injection, suggesting that hepatic MT may be an important source of plasma MT under our experimental conditions. Renal toxicity was observed morphologically and by an increase in blood urea nitrogen, plasma creatinine, proteinuria in rats injected with Cd-MT and both forms of Hg. Urinary MT excretion was significantly elevated in Cd-MT injected rats compared with those injected with CdCl2. However, HgCl2 and Hg-MT injected rats showed no significant difference in urinary MT excretion. The magnitude in the renal accumulation of Hg is similar after the administration of Hg-MT or HgCl2, but our findings suggest that the site of epithelial injury may be different. Injury effects of Hg-MT localized mainly in the terminal portions of the proximal convoluted tubule and the initial portions of the proximal straight tubule whereas inorganic Hg caused necrosis in pars recta segments of the proximal tubule.