Human plasma apolipoprotein (apo) D is a glycoprotein with an apparent molecular weight of 29,000 M(r). It is present, mainly, in high density lipoproteins (HDL) and very high density lipoproteins (VHDL). Western blot analysis of HDL and VHDL using rabbit antibodies to human apoD revealed major immunoreactive bands at 29,000 and 38,000 M(r), with minor bands ranging from 50,000 to and 80,000 M(r). Only the 29,000 M(r) band corresponding to apoD remained when the electrophoresis was conducted under reducing conditions, demonstrating that apoD is cross-linked to other proteins via disulfide bonds. The broad pattern of immunoreactivity was also observed under nonreducing conditions when the blood was collected into a solution of sulfhydryl-trapping reagents, or when these reagents were added to the isolated lipoproteins. These results indicated that the disulfide bonds were not the result of disulfide exchange during the experimental procedures. On the basis of amino acid sequencing and reactions to antibodies, the 38,000 M(r) band was identified as an apoD-apoA-II heterodimer. The apoD-apoA-II was also demonstrated in plasma. In both HDL and plasma, the apoD-apoA-II heterodimer constituted the major form of apoD. Disulfide-linked heterodimers of apoD and apoB-100 were also found in low and very low density lipoproteins, and in whole plasma. It is concluded that a fraction of human apoD, like other cysteine-containing apolipoproteins, exists as a disulfide-linked heterodimer with other apolipoproteins in all major human lipoprotein fractions.