The accumulation and metabolism of glycosphingolipids in primary kidney cell cultures from beige mice

Mol Cell Biochem. 1992 Dec 2;118(1):61-6. doi: 10.1007/BF00249695.

Abstract

In the normal C57BL/6J male mouse a specific subset of the kidney glycosphingolipids which is associated with multilamellar bodies of lysosomal origin and represents about 10% of the total kidney glycolipids, is excreted into the urine each day. This excretion is blocked and glycosphingolipids accumulate in the kidney of bgJ/bgJ mutants of this strain. To examine this process in vitro, glycosphingolipid metabolism and excretion were studied in beige mouse kidney cell cultures. Primary kidney cell cultures from male C57BL/6J control and bgJ/bgJ beige mutants were grown in D-valine medium and glycosphingolipids labeled with [3H]palmitate. As we have shown previously, the giant lysosomes of altered morphology were maintained in cultures of the beige kidney cells. Beige-J and control cells synthesized the same types of glycosphingolipids, but the mutant cells had quantitatively higher levels of these compounds than control cells, as determined by high performance liquid chromatography. Beige-J cells incorporated more [3H]palmitate into glycosphingholipids than control cells on a cpm/mg protein basis and the specific activity (cpm/pmole glycosphingolipid) was lower in beige cells. Medium from beige-J cells accumulated more glycosphingolipids than that from control cells in a 24 h period. The glycosphingolipids released into the medium as determined by HPLC were primarily non-lysosomal types and both control and mutant cells retained the glycosphingolipids associated with lysosomal multilamellar bodies excreted in vivo. The elevated levels of lysosomal glycosphingolipids and the dysmorphic lysosomes in primary cultures of beige cells, then, are not caused by a mutant block in secretion of lysosomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cells, Cultured
  • Chromatography, High Pressure Liquid
  • Glycosphingolipids / biosynthesis
  • Glycosphingolipids / isolation & purification
  • Glycosphingolipids / metabolism*
  • Kidney / metabolism*
  • Kinetics
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Mutant Strains
  • Palmitic Acid
  • Palmitic Acids / metabolism
  • Tritium

Substances

  • Glycosphingolipids
  • Palmitic Acids
  • Tritium
  • Palmitic Acid