Osseointegration of a hydroxyapatite-coated multilayered mesh stem

Biomaterials. 2004 Jul;25(15):2957-69. doi: 10.1016/j.biomaterials.2003.09.090.

Abstract

A new type of porous coating for hip prostheses called "multilayered mesh" was tested under weight-bearing conditions. The surface of the stem is constructed of titanium mesh produced by etching. The hip stems of hydroxyapatite (HA)-coated multilayered mesh and conventional beads were implanted into canine right hips, and animals were killed 3, 6 and 10 weeks and 6 and 12 months after implantation. Shear strength between the implant and the bone was evaluated by the push-out test. Bone ingrowth was calculated from backscattered electron imaging-scanning electron microscopy (BEI-SEM) images of transverse sections. Toluidine blue stained sections and the BEI-SEM images were evaluated histologically. The break sites of the specimens after the push-out test were evaluated on BEI-SEM images of longitudinal sections. The mean push-out strength of the HA-coated multilayered mesh samples was greater than that of the beads-coated samples every time tested, and the HA-coated multilayered mesh implants had significantly stronger push-out strength at 3 and 6 weeks (p<0.05). The strength of the HA-coated multilayered mesh implants was even greater at 6 and 12 months, whereas the strength of the beads-coated samples decreased. The HA-coated multilayered mesh implants showed significantly higher percentages of bone ingrowth than the beads-coated implants every time tested, except at 6 months (p<0.05). At 6 and 12 months, the bone ingrowth data for the HA-coated multilayered mesh implants increased, whereas it decreased for the beads-coated implants. The new bone formation had reached the bottom of the porous area of the HA-coated multilayered mesh surface by 3 weeks, but not had reached the bottom of the conventional beads surface. At 6 and 12 months, the smaller pores of the bead surface stopped the thickening of trabecular bone, and at 12 months, the break sites were at the bone-implant interface of the bead surface, whereas they were on the bone side of the HA-coated multilayered mesh surface. The difference between the break sites was significant at 12 months (p<0.05). The HA-coated multilayered mesh stem provided faster, stronger, and more durable osseointegration than the conventional bead stem.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Coated Materials, Biocompatible / chemistry*
  • Dogs
  • Durapatite / chemistry*
  • Equipment Failure Analysis*
  • Femur / pathology*
  • Femur / physiopathology*
  • Femur / surgery
  • Hip Prosthesis*
  • Humans
  • Materials Testing
  • Osseointegration*
  • Tensile Strength
  • Weight-Bearing / physiology

Substances

  • Coated Materials, Biocompatible
  • Durapatite