Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh.: photosynthesis, water relations and leaf morphology

Tree Physiol. 1990 Sep;6(3):305-15. doi: 10.1093/treephys/6.3.305.

Abstract

Genotypic variation in photosynthesis and plant water relations during drought, and in leaf and seedling morphology were examined in greenhouse-grown Fraxinus pennsylvanica Marsh. (green ash) from five populations located along an east-west transect from New York State to South Dakota. During a 17-day drought, South Dakota seedlings, from the most xeric habitat, maintained the highest net photosynthesis and leaf conductance, and New York seedlings, from the most mesic habitat, exhibited the lowest net photosynthesis and leaf conductance. All populations except New York adjusted osmotically during the 17-day drought, by the end of which New York seedlings had the highest osmotic potentials at full and zero turgor. Tissue elasticity increased in New York seedlings, but decreased in Nebraska seedlings during the drought. Leaves of South Dakota seedlings were the most xerophytic. They were smaller in area and greater in thickness and specific mass than leaves of other sources. Leaves of New York seedlings were thinner than those of the other genotypes and among the largest. Seedlings from South Dakota were smaller than those of the other populations.