Intermediate filaments are required for C. elegans epidermal elongation

Dev Biol. 2004 Mar 1;267(1):216-29. doi: 10.1016/j.ydbio.2003.11.007.

Abstract

Cytoplasmic intermediate filaments (cIFs) are thought to provide mechanical strength to vertebrate cells; however, their function in invertebrates has been largely unexplored. The Caenorhabditis elegans genome encodes multiple cIFs. The C. elegans ifb-1 locus encodes two cIF isoforms, IFB-1A and IFB-1B, that differ in their head domains. We show that both IFB-1 isoforms are expressed in epidermal cells, within which they are localized to muscle-epidermal attachment structures. Reduction in IFB-1A function by mutation or RNA interference (RNAi) causes epidermal fragility, abnormal epidermal morphogenesis, and muscle detachment, consistent with IFB-1A providing mechanical strength to epidermal attachment structures. Reduction in IFB-1B function causes morphogenetic defects and defective outgrowth of the excretory cell. Reduction in function of both IFB-1 isoforms results in embryonic arrest due to muscle detachment and failure in epidermal cell elongation at the 2-fold stage. Two other cIFs, IFA-2 and IFA-3, are expressed in epidermal cells. We show that loss of function in IFA-3 results in defects in morphogenesis indistinguishable from those of embryos lacking ifb-1. In contrast, IFA-2 is not required for embryonic morphogenesis. Our data indicate that IFB-1 and IFA-3 are likely the major cIF isoforms in embryonic epidermal attachment structures.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blotting, Western
  • Caenorhabditis elegans / embryology*
  • Caenorhabditis elegans / genetics
  • Epidermis / embryology*
  • Epidermis / ultrastructure
  • Microscopy, Electron
  • Morphogenesis
  • RNA Interference