Voltage-dependent anion channels (VDACs) are the porins in the outer mitochondrial membrane allowing metabolite flux between mitochondria and the cytoplasm. The permeabilities of the VDACs to ATP(-4), ADP(3-), creatine phosphate2-, Pi2-, Pi-, and other charged metabolites depend on the membrane potential. But neither the existence of the electrical potential across the outer membrane of mitochondria, nor its generation mechanisms have been experimentally shown. In this work, the concept of metabolically-derived potential that could be generated on the outer membrane was developed further. The computational study of the quantitative models shows that a steady-state membrane potential above 40 mV may be generated across a membrane with VDACs, if the VDACs are considered to be non-permeable to K+ and Cl-. Free permeability of VDACs to these inorganic ions, mimicking VDACs biological behavior, decreases the potential to nearly 12 mV. This decrease does not result from the electrical shortening of the potential by K+ and Cl- fluxes, but is caused by the electrodynamic compartmentation of the charged metabolites influencing the Goldman fluxes and the enzyme activity determining the fluxes. The interaction of two cyclic steady-state fluxes of charged metabolites due to the synergetic superposition of the potentials generated by each of these fluxes was obtained, and the effect of amplification of one flux by the other was theoretically demonstrated. These calculations based on VDACs' known permeability-voltage characteristics indicate that there is a certain possibility that the cell energy metabolism is regulated on the outer membrane of mitochondria by the electrical potential generated by various metabolically-dependent mechanisms.