Cohesive interactions between Porphyromonas gingivalis and plaque-forming bacteria, such as Streptococcus oralis, are considered to play an important role in the colonization of P. gingivalis in periodontal sites. Although P. gingivalis fimbriae have been reported to mediate coaggregation with S. oralis, the S. oralis molecule involved has not been identified. We identified the coadhesin of S. oralis ATCC 9811 and purified it by affinity column chromatography. We found that the molecular mass of the purified protein was approximately 40 kDa. Dot blot and Western blot assays showed binding of the 40-kDa protein to P. gingivalis fimbriae. Further, turbidimetric assays showed that the coadhesin inhibited coaggregation between P. gingivalis and S. oralis in a dose-dependent manner. Analyses of the amino-terminal sequences of the protein and its lysyl endopeptidase-cleaved fragments revealed that the coadhesin was identical to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Next, we cloned the gene that encodes S. oralis GAPDH and found that the sequence had a high degree of homology with the sequences of GAPDHs of various bacteria, including Streptococcus gordonii and Fusobacterium nucleatum. To confirm the contribution of S. oralis GAPDH to the interaction with P. gingivalis, a recombinant GAPDH protein was generated in Escherichia coli; this protein bound to P. gingivalis fimbriae and had an inhibitory effect on coaggregation. These results suggest that S. oralis GAPDH functions as a coadhesin for P. gingivalis fimbriae. In addition, considering the high degree of homology of the GAPDHs of various bacteria, those of other plaque-forming bacteria also may contribute to the colonization of P. gingivalis.