Enteric nervous system patterning in the avian hindgut

Dev Dyn. 2004 Mar;229(3):708-12. doi: 10.1002/dvdy.20011.

Abstract

The enteric nervous system (ENS) is principally derived from vagal and sacral neural crest cells that migrate throughout the gastrointestinal tract before differentiating into neurons and glia. These cells form two concentric rings of ganglia and regulate intestinal motility, absorption, and secretion. Abnormalities of ENS development can lead to disorders of intestinal function, including Hirschsprung's disease. These disorders are generally limited to the distal hindgut, suggesting unique features to development of this region. This study characterized the normal spatiotemporal development of the ENS within the avian hindgut. Neural crest cells begin to populate the hindgut at E8, with patterning of both plexuses complete by embryonic day 9. Crest-derived cells arrive in the submucosal layer before the myenteric layer, as well as differentiate to a neuronal phenotype first. The cloaca demonstrates a unique pattern, characterized by a disorganized myenteric plexus and a flattened nerve of Remak. Detailed understanding of normal avian hindgut ENS development will allow better utilization of this model system to study abnormalities of the intestinal nervous system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Body Patterning*
  • Chick Embryo
  • Enteric Nervous System / embryology*
  • Gene Expression Regulation, Developmental*
  • Immunohistochemistry
  • Intestines / embryology*
  • Models, Biological
  • Time Factors