Background: Although modulation of inflammatory processes has been suggested as a new treatment modality in heart failure (HF), our knowledge about abnormalities in the cytokine network during HF is still limited. On the basis of a previous cDNA array study examining peripheral blood mononuclear cells from HF patients, we hypothesized a role for activin A, a member of the transforming growth factor (TGF)-beta superfamily, in the pathogenesis of HF.
Methods and results: This study had 4 main and novel findings. First, serum levels of activin A were significantly elevated in patients with HF (n=86) compared with healthy control subjects (n=20), with increasing levels according to disease severity as assessed by clinical, hemodynamic, and neurohormonal parameters. Second, compared with control subjects, HF patients, as determined by real-time quantitative reverse transcriptase polymer chain reaction, also had markedly increased gene expression of the activin A subunit activin betaA in T cells but not in monocytes. Third, in a rat model of HF, we demonstrated a concerted induction of the gene expression of activin betaA and activin receptors IA, IB, IIA, and IIB after myocardial infarction. Immunohistochemical analysis localized activin A solely to cardiomyocytes. Finally, activin A markedly increased gene expression of mediators involved in infarction healing and myocardial remodeling (ie, atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta1, and monocyte chemoattractant protein-1) in neonatal rat cardiomyocytes.
Conclusions: Together with our demonstration of activin A-induced gene expression in neonatal cardiomyocytes of mediators related to myocardial remodeling, the expression pattern of activin A during clinical and experimental HF suggests an involvement of this cytokine in the pathogenesis of HF.