Cell-cycle-dependent expression of the large Ca2+-activated K+ channels in breast cancer cells

Biochem Biophys Res Commun. 2004 Mar 26;316(1):244-51. doi: 10.1016/j.bbrc.2004.02.041.

Abstract

In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve toward more negative potentials and an increase in current amplitude at negative and more at positive potential. Currents were inhibited by r-iberiotoxin (r-IbTX, 50 nM) and charybdotoxin (ChTX, 50 nM). These data indicate that human breast cancer cells express large-conductance Ca2+-activated K+ (BK) channels. BK current-density increased in cells synchronized at the end of G1, as compared with those in the early G1 phase. This increased current-density paralleled the enhancement in BK mRNA levels. Blocking BK channels with r-IbTX, ChTX or both induced a slight depolarization in cells arrested in the early G1, late G1, and S phases and accumulated cells in the S phase, but failed to induce cell proliferation. Thus, the expression of the BK channels was cell-cycle-dependent and seems to contribute more to the S phase than to the G1 phase. However, these K+ channels did not regulate the cell proliferation because of their minor role in the membrane potential.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / pathology
  • Cell Cycle
  • Cell Division
  • Cell Line, Tumor
  • Charybdotoxin / pharmacology
  • Electric Conductivity
  • G1 Phase
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Large-Conductance Calcium-Activated Potassium Channels
  • Membrane Potentials
  • Patch-Clamp Techniques
  • Peptides / pharmacology
  • Potassium Channel Blockers / pharmacology
  • Potassium Channels, Calcium-Activated / genetics
  • Potassium Channels, Calcium-Activated / metabolism*

Substances

  • Large-Conductance Calcium-Activated Potassium Channels
  • Peptides
  • Potassium Channel Blockers
  • Potassium Channels, Calcium-Activated
  • Charybdotoxin
  • iberiotoxin