Remodeling of resistance arteries is a key feature in hypertension. We studied the transition of vasoconstriction to remodeling in isolated rat skeletal muscle arterioles. Arterioles activated with 10 nM endothelin-1 showed functional adaptation when kept at low distension in a wire myograph setup, where contractile properties shifted towards a smaller lumen diameter after 1 day. Pressurized arteries kept in organoid culture showed physical inward remodeling after 3-day activation with 10 nM endothelin-1, characterized by a reduction in relaxed diameter without a change in the wall cross-sectional area (eutrophic remodeling). The relaxed lumen diameter (at 60 mm Hg) decreased from 169 +/- 5 (day 0) to 155 +/- 4 microm (day 3). An antibody directed to the beta(3)-integrin subunit (but not one directed to the beta(1)-integrin subunit) enhanced remodeling, from a reduction in relaxed diameter at 60 mm Hg of 15 +/- 2.4 to 22 +/- 1.8 microm (both on day 3). Collagen gel contraction experiments showed that the antibody directed to the beta(3)-integrin subunit enhanced the compaction of collagen by smooth muscle cells, from 83 +/- 1.5 to 68 +/- 1.5% of the initial gel diameter. In conclusion, these data show that inward eutrophic remodeling is a response to sustained contraction, which may involve collagen reorganization through beta(3)-integrins.
Copyright 2004 S. Karger AG, Basel