We isolated a cDNA encoding an orphan G protein-coupled receptor, TGR7, which has been recently reported to correspond to MrgD. To search for ligands for TGR7, we screened a series of small molecule compounds by detecting the Ca2+ influx in Chinese hamster ovary cells expressing TGR7. Through this screening, we found that beta-alanine at micromolar doses specifically evoked Ca2+ influx in cells expressing human, rat, or mouse TGR7. A structural analogue, gamma-aminobutyric acid, weakly stimulated cells expressing human or rat TGR7, but another analogue, glycine, did not. In addition, beta-alanine decreased forskolin-stimulated cAMP production in cells expressing TGR7, suggesting that TGR7 couples with G proteins Gq and Gi. In guanosine 5'-O-3-thiotriphosphate binding assays conducted using a membrane fraction of cells expressing TGR7, beta-alanine specifically increased the binding of guanosine 5'-O-3-thiotriphosphate. When a fusion protein composed of TGR7 and green fluorescent protein was expressed in cells, it localized at the plasma membrane but internalized into the cytoplasm after treatment with beta-alanine. In addition, we found that beta-[3H]alanine more efficiently bound to TGR7-expressing cells than to control cells. From these results, we concluded that TGR7 functioned as a specific membrane receptor for beta-alanine. Quantitative PCR analysis revealed that TGR7 mRNA was predominantly expressed in the dorsal root ganglia in rats. By in situ hybridization and immunostaining, we confirmed that TGR7 mRNA was co-expressed in the small diameter neurons with P2X3 and VR1, both in rat and monkey dorsal root ganglia. Our results suggest that TGR7 participates in the modulation of neuropathic pain.