Scanning tunneling microscopy (STM) can detect individual molecular configuration with its high spatial resolution ability, but some intrinsical and extrinsic factors result in the complexities of STM imaging of single molecules. By combining STM experimental work and theoretical simulation with the local density approximation based on Bardeen perturbation method, we have explored the atomic-scale configuration of the following molecular systems: C(60) molecules adsorbed on Si(111)-(7x7); alkanethiol self-assembly monolayers on Au(111); C(60) molecule imaged by STM tip adsorbed with another C(60) molecule; O(2) molecule adsorbed on Ag(110) and CO molecule adsorbed on Cu(111) imaged by CO chemically modified STM tip. Some related problems including: molecule-substrate interactions, STM imaging mechanism, chemically modified STM tip, etc., are discussed.