A novel approach for analyzing underivatized very long chain fatty acids (C16-C26) and other apolar compounds such as triacylglycerols is described. It is based on reversed-phase HPLC separation followed by mass spectrometric detection. Partly miscible solvents are used for stepwise gradient elution starting with a methanol/water and ending with a methanol/n-hexane binary mixture. The developed technique does not need derivatization, and analysis is fast (fatty acids were separated in 2-min-long chromatograms) and robust. The developed method is also very sensitive; a quantitation limit in the low-picogram range was achieved for fatty acids. The separation mechanism and advantages of the suggested technique are discussed and illustrated in the case of blood analysis and plant oil characterization.