A new manganese(II)-substituted aluminophosphate, [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], denoted as MnAPO-14, has been synthesized hydrothermally in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the structure-directing agent. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of MnAPO-14 is built up by MnO(4)(H(2)O)(2) octahedra, AlO(4) tetrahedra, and PO(4) tetrahedra via Al-O-P and Mn-O-P linkages. Its framework is analogous to that of aluminophosphate zeotype AFN in which 25% of the aluminum sites are replaced by Mn(II) atoms. The diprotonated DABCO cations reside in the eight-membered ring channels. Computational simulations indicate that the substitution site of Mn to Al is determined by the host-guest interaction. Crystal data: [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], triclinic P1 (No. 2), a = 9.5121(4) A, b = 9.8819(3) A, c = 12.1172(4) A, alpha = 70.533(2) degrees, beta = 73.473(2) degrees, gamma = 82.328(2) degrees, Z = 2, R(1) = 0.0586 (I > 2 sigma(I)), and wR(2) = 0.1877 (all data).