Although accumulating evidence suggests a chemopreventive role for folic acid (FA) in colorectal carcinogenesis, the underlying mechanisms are largely unknown. Previously, we reported that supplemental FA inhibits the expression and activation of epidermal growth factor receptor (EGFR) in colon cancer cell lines. To determine the mechanism(s) by which FA affects EGFR function, we have examined whether and to what extent supplemental FA or its metabolites 5-methyltetrahydrofolate (MTF), dihydrofolate (DF), and tetrahydrofolate (TF) will modulate basal and serum-induced activation of the EGFR promoter in the HCT-116 colon cancer cell line. HCT-116 cells were preincubated with or without (control) FA or one of its metabolites (10 microg/ml) for 48 h, transfected with the EGFR promoter luciferase reporter construct, and incubated for 48 h with FA, DF, TF, or 5-MTF in the absence or presence of 10% FBS. Supplemental FA as well as its metabolites markedly inhibited EGFR promoter activity and its methylation status. Exposure of the cells to 10% FBS caused a marked stimulation of EGFR promoter activity and its expression, both of which were greatly abrogated by supplemental FA and 5-MTF. In contrast, serum-induced activation of c-fos promoter activity was unaffected by 5-MTF. The 5-MTF-induced inhibition of serum-mediated stimulation of EGFR promoter activity and EGFR expression was reversed when methylation was inhibited by 5-aza-2'-deoxycytidine. Our data suggest that FA and its metabolite 5-MTF inhibit EGFR promoter activity in colon cancer cells by enhancing methylation. This could partly be responsible for FA-mediated inhibition of growth-related processes in colorectal neoplasia.