A comparison of vernier acuity for narrowband and broadband stimuli

Spat Vis. 2004;17(1-2):111-26. doi: 10.1163/156856804322778297.

Abstract

This study investigates the influence of contrast and exposure duration on vernier acuity thresholds for abutting and separated narrowband stimuli, and asks whether these data can predict broadband vernier performance. Vernier thresholds were determined for sinusoidal grating stimuli at two spatial frequencies (1 and 8 c/deg) across a range of contrasts (0.05-0.8) and exposure durations (35-2100 ms). Performance was assessed for the abutting configuration, and when a gap equivalent to 0.5 to 1.5 times the spatial period of the grating was introduced between the upper and lower halves of the grating. Vernier thresholds were also determined for a square-wave stimulus as a function of contrast (0.06 to 0.78). Exposure duration was fixed at 2100 ms. In addition, thresholds were determined at the appropriate contrast levels for the fundamental frequency (1.8 c/deg) of the square-wave, and for a number of the harmonics (3F, 5F, 7F, 9F). Our results provide support for filter models of vernier acuity by showing that vernier performance for abutting and closely-separated broadband stimuli represents the envelope of vernier sensitivity of those spatial frequency mechanisms that are activated by the broadband stimulus. In the case of high frequency grating stimuli presented for long exposure durations, vernier performance can be invariant across much of the contrast range. Despite this, however, contrast independence is not exhibited for abutting broadband stimuli because, within the broadband stimuli, the contrast of the higher harmonic components never reaches a level to reveal this plateau.

Publication types

  • Comparative Study

MeSH terms

  • Contrast Sensitivity / physiology*
  • Form Perception / physiology
  • Humans
  • Male
  • Motion Perception / physiology
  • Pattern Recognition, Visual / physiology*
  • Photic Stimulation
  • Psychophysics
  • Sensory Thresholds
  • Visual Acuity / physiology*