The characteristics of the forward hot electrons produced by subpicosecond laser-plasma interactions are studied for different laser polarizations at laser intensities from subrelativistic to relativistic. The peak of the hot electron beam produced by p-polarized laser beam shifts to the laser propagation direction from the target normal direction as the laser intensity reaches the relativistic. For s-polarized laser pulse, hot electrons are mainly directed to the laser axis direction. The temperature and the maximum energy of hot electrons are much higher than that expected by the empirical scaling law. The energy spectra of the hot electrons evolve to be a single-temperature structure at relativistic laser intensities from the two-temperature structure at subrelativistic intensities. For relativistic laser intensities, the forward hot electrons are less dependent on the laser polarization under the laser conditions. The existing of a preplasma formed by the laser amplified spontaneous emission pedestal plays an important role in the interaction. One-dimensional particle-in-cell simulations reproduce the most characteristics observed in the experiment.