Step-off edges and tissue interfaces are prevalent in cartilage injury such as after intra-articular fracture and reduction, and in focal defects and surgical repair procedures such as osteochondral graft implantation. It would be useful to assess the function of injured or donor tissues near such step-off edges and the extent of integration at material interfaces. The objective of this study was to determine if indentation testing is sensitive to the presence of step-off edges and the integrity of material interfaces, in both in vitro simulated repair samples of bovine cartilage defect filled with fibrin matrix, and in vivo biological repair samples from a goat animal model. Indentation stiffness decreased at locations approaching a step-off edge, a lacerated interface, or an integrated interface in which the distal tissue was relatively soft. The indentation stiffness increased or remained constant when the site of indentation approached an integrated interface in which the distal tissue was relatively stiff or similar in stiffness to the tissue being tested. These results indicate that indentation testing is sensitive to step-off edges and interface integrity, and may be useful for assessing cartilage injury and for following the progression of tissue integration after surgical treatments.