A conformational change in heparan sulfate 3-O-sulfotransferase-1 is induced by binding to heparan sulfate

Biochemistry. 2004 Apr 27;43(16):4680-8. doi: 10.1021/bi0499112.

Abstract

The 3-O-sulfation of glucosamine by heparan sulfate 3-O-sulfotransferase-1 (3-OST-1) is a key modification step during the biosynthesis of anticoagulant heparan sulfate (HS). In this paper, we present evidence of a conformational change that occurs in 3-OST-1 upon binding to heparan sulfate. The intrinsic fluorescence of 3-OST-1 was increased in the presence of HS, suggesting a conformational change. This apparent conformational change was further investigated using differential chemical modification of 3-OST-1 to measure the solvent accessibility of the lysine residues. 3-OST-1 was treated with acetic anhydride in either the presence or absence of HS using both acetic anhydride and hexadeuterioacetic anhydride under nondenaturing and denaturing conditions, respectively. The relative reactivity of the lysine residues to acetylation and [2H] acetylation in the presence or absence of HS was analyzed by measuring the ratio of acetylated and deuterioacetylated peptides using matrix-assisted laser desorption ionization mass spectrometry. The solvent accessibilities of the lysine residues were altered differentially depending on their location. In particular, we observed a group of lysine residues in the C-terminus of 3-OST-1 that become more solvent accessible when 3-OST-1 binds to HS. This observation indicates that a conformational change could be occurring during substrate binding. A truncated mutant of 3-OST-1 that lacked this C-terminal region was expressed and found to exhibit a 200-fold reduction in sulfotransferase activity. The results from this study will contribute to our understanding of the interactions between 3-OSTs and HS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Substitution / genetics
  • Animals
  • Enzyme Activation / genetics
  • Heparitin Sulfate / chemistry
  • Heparitin Sulfate / metabolism*
  • Humans
  • Isoenzymes / chemistry
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Mice
  • Models, Molecular
  • Peptide Fragments / chemistry
  • Peptide Fragments / metabolism
  • Protein Binding / genetics
  • Protein Conformation
  • Sequence Alignment
  • Spectrometry, Fluorescence
  • Substrate Specificity / genetics
  • Sulfotransferases / chemistry*
  • Sulfotransferases / genetics
  • Sulfotransferases / metabolism*

Substances

  • Isoenzymes
  • Peptide Fragments
  • Heparitin Sulfate
  • HS6ST2 protein, human
  • Hs6st1 protein, mouse
  • Sulfotransferases
  • heparan sulfate 6-O-sulfotransferase