Diffuse optical spectroscopy (DOS) of breast tissue provides quantitative, functional information based on optical absorption and scattering properties that cannot be obtained with other radiographic methods. DOS-measured absorption spectra are used to determine the tissue concentrations of deoxyhemoglobin (Hb-R), oxyhemoglobin (Hb-O2), lipid, and water (H2O), as well as to provide an index of tissue hemoglobin oxygen saturation (StO2). Tissue-scattering spectra provide insight into epithelial, collagen, and lipid contributions to breast density. Clinical studies of women with malignant tumors show that DOS is sensitive to processes such as increased tissue vascularization, hypoxia, and edema. In studies of healthy women, DOS detects variations in breast physiology associated with menopausal status, menstrual cycle changes, and hormone replacement. Current research involves using DOS to monitor tumor response to therapy and the co-registration of DOS with magnetic resonance imaging. By correlating DOS-derived parameters with lesion pathology and specific molecular markers, we anticipate that composite "tissue optical indices" can be developed that non-invasively characterize both tumor and normal breast-tissue function.