Long-term exposure to arsenic in drinking water has been linked to cancer of the bladder, lungs, skin, kidney, nasal passages, liver, and prostate in humans. It is therefore important to understand the structural aspects of arsenic in water, as hydrated arsenic is most likely the initial form of the metalloid absorbed by cells. We present a detailed experimental and theoretical characterization of the coordination environment of hydrated arsenite. XANES analysis confirms As(III) is a stable redox form of the metalloid in solution. EXAFS analysis indicate, at neutral pH, arsenite has a nearest-neighbor coordination geometry of approximately 3 As-O bonds at an average bond length of 1.77 A, while at basic pH the nearest-neighbor coordination geometry shifts to a single short As-O bond at 1.69 A and two longer As-O bonds at 1.82 A. Long-range ligand scattering is present in all EXAFS samples; however, these data could not be fit with any degree of certainty. There is no XAS detectable interaction between As and antimony, suggesting they are not imported into cells as a multinuclear complex. XAS results were compared to a structural database of arsenite compounds to confirm that a 3 coordinate As-O complex for hydrated arsenite is the predominate species in solution. Finally, quantum chemical studies indicate arsenite in solution is solvated by 3 water molecules. These results indicate As(OH)3 as the most stable structure existing in solution at neutral pH; thus, ionic As transport does not appear to be involved in the cellular uptake process.