Downregulation of protein tyrosine kinases is a major function of the multidomain protein c-Cbl. This effect of c-Cbl is critical for both negative regulation of normal physiological stimuli and suppression of cellular transformation. In spite of the apparent importance of these effects of c-Cbl, their own regulation is poorly understood. To search for possible novel regulators of c-Cbl, we purified a number of c-Cbl-associated proteins by affinity chromatography and identified them by mass spectrometry. Among them, we identified the UBA- and SH3-containing protein T-cell Ubiquitin LigAnd (TULA), which can also bind to ubiquitin. Functional studies in a model system based on co-expression of TULA, c-Cbl, and EGF receptor in 293T cells demonstrate that TULA is capable of inhibiting c-Cbl-mediated downregulation of EGF receptor. Furthermore, modulation of TULA concentration in Jurkat T-lymphoblastoid cells demonstrates that TULA upregulates the activity of both Zap kinase and NF-AT transcription factor. Therefore, our study indicates that TULA counters the inhibitory effect of c-Cbl on protein tyrosine kinases and, thus, may be involved in the regulation of biological effects of c-Cbl. Finally, our results suggest that TULA-mediated inhibition of the effects of c-Cbl on protein tyrosine kinases is caused by TULA-induced ubiquitylation and degradation of c-Cbl.