The recent completion of human, Anopheles gambiae, and Plasmodium falciparum genomes relevant to the study of human malaria allows the application of modern proteomic technologies to complement previously implemented conventional approaches. Proteomic analysis has been employed to elucidate global protein expression profiles, subcellular localization of gene products, and host-pathogen interactions that are central to disease pathogenesis and treatment. The high-throughput nature of these techniques is in accord with the pace of drug and vaccine development that have the potential to directly reduce the morbidity and mortality of disease.