Malaria ranks among the deadliest infectious diseases that kills more than one million persons every year. The mosquito is an obligatory vector for malaria transmission. In the mosquito, Plasmodium undergoes a complex series of developmental events that includes transformation into several distinct morphological forms and the crossing of two different epithelia--midgut and salivary gland. Circumstantial evidence suggests that crossing of the epithelia requires specific interactions between Plasmodium and epithelial surface molecules. By use of a phage display library we have identified a small peptide-SM1--that binds to the surfaces of the mosquito midgut and salivary glands. Transgenic Anopheles stephensi mosquitoes expressing a SM1 tetramer from a blood-inducible and gut-specific promoter are substantially impaired in their ability to sustain parasite development and transmission. A second effector gene, phospholipase A2, also impairs parasite transmission in transgenic mosquitoes. These findings have important implications for the development of new strategies for malaria control.