Tissue engineering represents a potential method for repairing damaged skeletal muscle tissue. Extracellular matrix (ECM) proteins were evaluated for their ability to aid in cell attachment, whereas a poly(L-lactic acid) (PLLA) fiber scaffold was tested as a substrate for the differentiation of human skeletal muscle cells. In comparison to uncoated or gelatin-coated PLLA films, cell attachment increased significantly (p < 0.001) on PLLA films coated with ECM gel, fibronectin, or laminin. Myoblasts differentiated into multinucleated myofibers on ECM gel-coated PLLA fibers, and expressed muscle markers such as myosin and alpha-actinin. Oligonucleotide microarray analysis showed similar gene expression profiles for human skeletal muscle cells on ECM gel-coated PLLA fibers as to that observed for myofibers on tissue culture plates. Therefore, PLLA fibers coated with ECM proteins provide a scaffold for the development of skeletal muscle tissue for tissue engineering and cell transplantation applications.
Copyright 2004 Wiley Periodicals, Inc. J Biomed Mater Res 69A: 373-381, 2004