Investigating the origins of triploblasty: 'mesodermal' gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa)

Development. 2004 May;131(10):2463-74. doi: 10.1242/dev.01119.

Abstract

Mesoderm played a crucial role in the radiation of the triploblastic Bilateria, permitting the evolution of larger and more complex body plans than in the diploblastic, non-bilaterian animals. The sea anemone Nematostella is a non-bilaterian animal, a member of the phylum Cnidaria. The phylum Cnidaria (sea anemones, corals, hydras and jellyfish) is the likely sister group of the triploblastic Bilateria. Cnidarians are generally regarded as diploblastic animals, possessing endoderm and ectoderm, but lacking mesoderm. To investigate the origin of triploblasty, we studied the developmental expression of seven genes from Nematostella whose bilaterian homologs are implicated in mesodermal specification and the differentiation of mesodermal cell types (twist, snailA, snailB, forkhead, mef2, a GATA transcription factor and a LIM transcription factor). Except for mef2, the expression of these genes is largely restricted to the endodermal layer, the gastrodermis. mef2 is restricted to the ectoderm. The temporal and spatial expression of these 'mesoderm' genes suggests that they may play a role in germ layer specification. Furthermore, the predominantly endodermal expression of these genes reinforces the hypothesis that the mesoderm and endoderm of triploblastic animals could be derived from the endoderm of a diploblastic ancestor. Alternatively, we consider the possibility that the diploblastic condition of cnidarians is a secondary simplification, derived from an ancestral condition of triploblasty.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Conserved Sequence
  • Embryo, Nonmammalian / physiology*
  • Gene Expression Regulation, Developmental / genetics*
  • Mesoderm / physiology*
  • Molecular Sequence Data
  • Phylogeny
  • Sea Anemones / classification
  • Sea Anemones / embryology
  • Sea Anemones / genetics*
  • Sequence Alignment
  • Sequence Homology, Amino Acid