Accumulating evidence indicates that the formation of tumor cell platelet emboli complexes in the blood stream is a very important step during metastases and that the anti-metastasis effects of heparin are partially due to a blockade of P-selectin on platelets. In this study, heparin and chemically modified heparins were tested as inhibitors of three human colon carcinoma cell lines (COLO320, LS174T, and CW-2) binding to P-selectin, adhering to CHO cells expressing a transfected human P-selectin cDNA, and adhering to surface-anchored platelets expressing P-selectin under static and flow conditions. The aim was to screen for heparin derivatives with high anti-adhesion activity but negligible anticoagulant activity. In this study, four modified heparins with high anti-adhesion activity were identified including RO-heparin, CR-heparin, 2/3ODS-heparin, and N/2/3DS-heparin. NMR analysis proved the reliability of structure of the four modified heparins. Our findings suggested that the 6-O-sulfate group of glucosamine units in heparin is critical for the inhibition of P-selectin-mediated tumor cell adhesion. Heparan sulfate-like proteoglycans on these tumor cell surfaces are implicated in adhesion of the tumor cells to P-selectin. Some chemically modified heparins with low anticoagulant activities, such as 2/3ODS-heparin, may have potential value as therapeutic agents that block P-selectin-mediated cell adhesion and prevent tumor metastasis.