Objective: The aim of this study was to examine the effects of the route of administration [intrabone marrow (IBM) vs intravenous (IV)] and the role of conditioning with irradiation in optimizing mesenchymal stem cell (MSC) transplantation.
Materials and methods: To determine if irradiation resulted in depletion of colony-forming unit fibroblasts (CFU-F), which might favor the engraftment of donor MSC, the number of CFU-Fs was assayed from animals receiving either hemibody irradiation (HBI) or total body irradiation (TBI).
Results: TBI resulted in a marked reduction of CFU-F numbers that spontaneously resolved, whereas animals receiving HBI did not experience depletion of CFU-F. Animals receiving MSC grafts by the IV route had higher numbers of marrow CFU-F. MSC were transduced using retroviral vectors encoding the neomycin resistance gene (Neo(R)) and a second gene encoding either the human soluble tumor necrosis factor receptor (hsTNFRII) or beta-galactosidase (beta-Gal). MSCs were administered by either the IV or IBM route to animals receiving HBI. The Neo(R) transgene was detectable in hematopoietic tissues of all animals and nonhematopoietic tissues in a single animal. Evidence of transgene expression was documented by detection of beta-Gal(+) cells in BM smears and transiently elevated serum levels of hsTNFRII.
Conclusion: These studies indicate that 1) MSC possess the ability to engraft and persist in an unrelated mismatched allogeneic hosts; 2) 250-cGy HBI did not favor engraftment of MSC; 3) the IBM route was not more effective than the IV route in delivering MSC grafts; and 4) transplanted MSC preferentially localized to the marrow rather than nonhematopoietic tissues.